N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2

Größe: px
Ab Seite anzeigen:

Download "N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2"

Transkript

1 Kpitel 5 Gvittionstheoie Ausgebeitet von G. Knup und H. Wlitzki 5. Gvittionskft - Gvittionsfeld Die Gundidee zu Gvittionstheoie stmmt von Newton ( ): Die Kft, die einen Apfel fllen lässt, ist die gleihe, die den Mond in eine Bhn um die Ede zwingt, die Ede in eine Bhn um die Sonne usw. In llen ällen ziehen sih Mssen einnde n. Die Kft, mit de sie sih nziehen, ist bhängig von de Göße diese Mssen und ihem Abstnd voneinnde. Aus dem Lex Teti (Atio = Retio) folgt, dss es sih um eine beideseitige Anziehung hndelt, lso de Apfel von de Ede und die Ede vom Apfel ngezogen wid. Duh Messungen ehielt mn: = γ mm γ wid Gvittionskonstnte gennnt und ist: [ N = kg m ] se 2 (5.) γ = 6, 67 0 [Nm 2 kg 2 ] γ = 6, [m 3 g se ] Die Gvittionskft zeigt imme in Rihtung des Einheitsvektos ˆ = 2 2 de ebindungssteke zwishen beiden Mssen (Zentlkft) und wikt imme nziehend. N = Newton ist die Einheit de Kft. 2 = γ m m ( 2 ) 2 ist die Kft uf ds este Teilhen ls Wikung des zweiten Teilhens. D die Gvittionskft konsevtiv und zentl ist, können wi sie ls Gdient eine potentiellen Enegie sheiben, die nu vom Betg von 2 bhängt. 2 = U( 2 ) = x y z U( 2 ) = Ode umgekeht können wi die potentielle Enegie sheiben ls: U x U y U z (5.2) = 2 U 2 = U( 2 ) = m m 2 2 d = γ 2 (5.3) 85

2 Ist die Msse m 2 kein Mssenpunkt, sonden usgedehnt (lso us veshiedenen Mssepunkten zusmmengesetzt), so ddieen sih die Wikungen lle einzelnen Mssepunkte uf die Msse m (Supeposition). Mn muss lso lle einzelnen Käfte ufsummieen. ( ) = n i= γ m m i i 3 ( i) (5.4) m ( ) i m i m 3 m 2 m i 0 Abb. 5.: Ist m 2 eine Msse mit dem olumen und de Dihte ρ, so geht die Summe in ein Integl übe: ρ( ) ( ) = γ m 3 ( )dτ (5.5) Um die Gvittionskft unbhängig von de Pobemsse m zu mhen, definieen wi ls Gvittionsfeld: 5.2 Gvittionspotentil g( ) = γ g( ) def = ( ) m (5.6) ρ( ) 3 ( )dτ (5.7) In einem zentlen und konsevtiven Kftfeld eine Mssenveteilung (Mssenpunkte ode kontinuielih) ht ein Teilhen de Msse m die potentielle Enegie ode llgemeine: U () = γ m U i () = γ m m i i (5.8) ρ( ) dτ (5.9) Anlog zum Gvittionsfeld definieen wi ls Gvittionspotentil potentielle Enegie po Einheitspunktmsse: G() def = U() m = γ ρ( ) dτ (5.0) 86

3 5.3 eldgleihungen Zu Heleitung de eldgleihungen fü ds Gvittionsfeld (späte uh fü elektishe und mgnetishe elde) sind zwei fundmentle Integlsätze von Bedeutung:. Guß she Stz: ü ein beliebiges ektofeld g( ) in einem olumen mit de Obeflähe gilt: ( ) g( )d f = = div g()dτ g( )dτ (5.) df M dτ Abb. 5.2: dτ = olumenelement; d f = lähenelement (geihtet in Nomlihtung nh ußen); ( )... df = Integl übe die lähe, die umshließt Mit dem Guß shen Stz weden die Eigenshften eines ektofeldes g( ) (z.b. des Gvittionsfeldes) im Innen eines beliebigen olumens mit denen des eldes uf de Obeflähe veknüpft. 2. Stokes she Stz: Gegeben ist eine Kuve, deen Umlufsinn beknnt ist. Übe diese Kuve wid eine lähe gelegt, die ls Rnd ht. (Mn knn sih ds vostellen, wie eine Seifenblse kuz vo dem Ablösen von de Dhtshlinge, ode wie ein Shmettelingsnetz, ds n einem Dhtbügel befestigt ist.) g( )d ( ) l = ot g( ) df (e) = ot g( ) = g( ) = ( ) g( ) df (5.2) (e) y g z z g y z g x x g z x g y y g x Aus dem Stokes shen Stz geht hevo, dss ot gd f unbhängig von de om und de Göße de lähe ist und nu vom Rnd diese lähe bhängt. Stz : Es gilt stets fü ds Gvittionsfeld: ot g( ) = g( ) = 0 (5.3) 87

4 df M dl Abb. 5.3:... d l = geshlossenes Linienintegl übe die Kuve ; d l = Linienelement von ; ()...d f = Integl übe die lähe mit dem Rnd Beweis: Wi möhten diesen Stz uf zwei Aten beweisen. ) Mit Hilfe des Stokes shen Stzes: Abb. 5.4: A = E ot g( )d Stokes = g( )d l (e) ( ) Nh (5.6) ist g( ) = m g( ) = G( ) Nh (5.4) ist ( ) = U() g( ) = G( ) Nh (5.0) ist U() = m G() g( ) = G( ) g( )d f = = G( )d l = d be A g( )d l [ ] E G() A = E ist g( )d f = G( E ) G( A ) = 0 D dies fü jede Göße und Oientieung de lähe gilt, ist uh de Integnd ot g( ) = 0. b) Duh Nhehnen: 88

5 ot g() = ( ) G() = ( )G() = y z z y z x x z x y y x (G() ) = Z.B.. Zeile: 2 y z G 2 z y G = 0 usw. D G() = γ ρ( ) dτ, sind lle gemishten zweiten Ableitungen de unktion G stetige unktionen, lso uh vetushb. ot g( ) = 0 q.e.d. Stz: Ds Gvittionspotentil efüllt die Poisson-Gleihung: G() = 4πγ ρ( ) (5.4) = = 2 x y z 2 = div gd = Lple-Opeto Beweis: Ein Mssepunkt de Msse m i m Ot i ht ds Kftfeld: g i ( ) = γ m i i 3 ( i) Legt mn den Uspung des Koodintensystems in den Mssepunkt m i, so ist i = 0: g i ( ) = γ m i 3 = γ m i 2 ˆ Wi legen um m i ein beliebiges olumen mit de Obeflähe mit beliebige om und bilden ds Obeflähenintegl: g i ( )d f = γm i 2 ˆ d f Duh ds Sklpodukt ˆ d f = ˆ d f osα mit α (ˆ, d ˆf), kommt nu de Teil von d f zu Geltung, de pllel zu ˆ steht. Diesen Teil nennen wi d f. Es gilt: d f = df osα Gleihzeitig ist be d f = 2 sinϑdθdφ (in Polkoodinten), so folgt: g i ( )d f = γm i = γ m i 2π = 4πγ m i 2 }{{} ˆ n 0 = 2 sinϑ dφdϑ }{{} df os α sinϑdϑ = γ m i 2π 2 89

6 ^ α df m Abb. 5.5: df ^ α df m Abb. 5.6: Wenn m i ußehlb de lähe liegt, titt mindenstens zwei Ml duh die lähe. D beim Ein- und Austitt de Winkel α einml stumpf und einml spitz ist, de os α lso bwehselnd positiv ode negtiv wid, heben sih die Anteile g( ) d f beim Integieen übe die gesmte lähe gegeneinnde uf. Also ist: g i ( )d f) = 4πγm i g i ( )d f = 0 m i innehlb de lähe m i ußehlb Ht mn sttt eines einzelnen Mssepunktes eine Mssenveteilung, so ist m i duh ρ( )dτ zu esetzen: Nh dem Guß shen Stz ist: g( )d f = γ 4π ρ( )dτ 90

7 γ 4π g( )df = ρ( )dτ = div g( )dτ div g( ) dτ }{{} g ( g( ) + γ 4πρ( ) ) dτ = 0 D diese Gleihung fü jedes beliebige olumen efüllt ist, muss de Integnd stets Null sein. g( ) = div g( ) = 4π otγρ( ) D g( ) = G() w: div G = G = G = 4π ρ( ) 4πγ ρ( ) 5.4 Beispiele. Beispiel: Homogene Kugel mit Rdius (z.b. Ede) M Abb. 5.7: = Rdius de homogenen Kugel (ρ = onst.) mit de Msse M = ρdτ; = olumen (Kugel) mit dem Rdius und dem Mittelpunkt im Mittelpunkt de Mssenveteilung Die Poissongleihung lutet: G() = g( ) = +4πγ ρ( ) D ds Poblem kugelsymmetish ist, ist g nu eine unktion des Abstndes vom Mittelpunkt. Wi legen um die Edkugel ein (Kugel-)olumen mit de Obeflähe. Duh Integtion übe ds olumen folgt ) ll > : D ρ() fü > gleih Null, egibt ds ehte Integl: g( )dτ = 4πγ ρ( )dτ (5.5) 4πγ ρ( )dτ = 4πγ M 9

8 Aus dem Guß shen Stz folgt unte de Beüksihtigung, dss g() bei diesem kugelsymmetishen Poblem imme pllel zu d f (einem lähenstük von ) ist. g( )dτ }{{} = g()d f = }{{} g () df Guß g d f = g ()4π 2 }{{} = 4πγ ρ( )dτ = 4πγ M (5.5) g () = γ M 2 g ist die Rdilkomponente von g(). In diesem ll ist g () = ± g(). df = 4π2, d übe die Obeflähe de Kugel mit dem Rdius integiet wid. b) ll < : D jetzt übe eine Kugel integiet wid, die kleine ist ls die homogene Kugel (z.b. Edkugel), egibt ds Integl Nh (5.5) ist: 4πγ ρ( )dτ = 4πγ 4 3 π3 ρ() = 4πγ 4 3 π3 ρ() }{{} M 3 3 g()dτ = 4πγ ρ( )dτ = 4πγM 3 3 und nh dem Guß shen Stz: g()dτ = }{{} Guß g () = γ M 2 g()d f = g ()4π 2 = 4πγM 3 3 Ds Gvittionsfeld lässt sih dstellen ls Gdient des Potentils: g( ) = G() D g und G nu von bhängen, knn mn einfhe sheiben: Duh Integtion diese Gleihung ehält mn g () = G() ü > ist G() = G() = g ()d ( γm )d 2 = γ M 92

9 ü < ist G() = = γ M ( ) γ M 2 d ( ) 2 ( γ M ) 2 d 2. Beispiel: Hohlkugel mit dem Rdius : Die Msse de Kugel befindet sih uf eine venhlässigb dünnen Shiht uf de Obeflähe (z.b. Weihnhtskugel). Legt mn um die Hohlkugel ein (Kugel-)olumen mit dem Rdius und de Obeflähe = 4π 2, so ist hie wie beim Beispiel : ) ll > : G() g () ~ ~ 2 ~ ~ 2 Abb. 5.8: g()dτ = }{{} Guß = }{{} (5.5) g = γ M 2 g()d f = g () df = g ()4π 2 4πγ ρ()dτ = 4πγ M b) ll < : Ds Kftfeld in de Kugel ist gleih Null, weil sih die gesmte Msse de Hohlkugel ußehlb des olumens befindet. g () = 0 Ds Gvittionspotentil ehält mn uh hie wiede duh Integtion nh d: 93

10 ) ll > : G() = g d = γ M b) ll < : G() = ( γm ) 2 d (0) }{{} =0 d = γ M Tägt mn g () und G() gegen uf, so sieht mn, dss sih ds eld und ds Potentil de Hohlkugel nu im Beeih < von de homogenen mssegefüllten Kugel untesheiden. G() g () ~ ~ 2 Abb. 5.9: 94

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Analysis II. Uneigentliche Integrale

Analysis II. Uneigentliche Integrale Pof D H Benne Osnbück SS 204 Anlysis II Volesung 3 In diese Volesung entwickeln wi die Integtionstheoie weite, und zw untesuchen wi die Fge, ws pssiet, wenn wi in einem Integl b die Intevllgenzen gegen

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 8 Grundzüge der Vektornlysis. Stz von Green Mit dem Stz von Green wird ein Zusmmenhng zwishen einem Flhintegrl uber einen ebenen Bereih und dem Kurvenintegrl uber die Rndkurve des Bereihs drgestellt.

Mehr

4.4. Lokale Extrema und die Hessesche Form 75

4.4. Lokale Extrema und die Hessesche Form 75 4.4. Lokle Extem und die Hessesche Fom 75 SchuenwiunsdieSttelpunktenochmlgenuen.Nehmenwin,f hben eine Stelle p eine indefinite Hessemtix mit einem positiven und einem negtiven Eigenwet. Dnn sieht de Gph

Mehr

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt?

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt? Fchhochschule Hnnove Klusu MA 9.6. Fchbeeich Mschinenbu Zeit: 9 min Fch: Physik im SS Hilfsmittel: Fomelsmmlung zu Volesung. Motoäde fhen Kuven mit Schäglge (chkteisiet duch den Winkel α im ild echts,

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

4) Magnetischer Einschluss von Plasmen

4) Magnetischer Einschluss von Plasmen 4) Magnetishe Einshluss on Plasen Mit extenen elektishen elden gibt es aufgund de Abshiung i Plasa kau Kontollöglihkeiten. Dies wid jedoh it Magnetfelden eögliht, da das Magnetfeld geladene Teilhen an

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Magnetostatik. Ströme und Lorentzkraft

Magnetostatik. Ströme und Lorentzkraft Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikationstehnik I of. D. tefan Weinziel ustelösung 7. ufgabenblatt. ikofone. Was vesteht man unte em (Fel-Übetagungsfakto eines ikofons? De Übetagungsfakto eines ikofons (engl. ensitivity ist as Vehältnis

Mehr

Um- und Inkugelradien am allgemeinen Tetraeder

Um- und Inkugelradien am allgemeinen Tetraeder Ano Fehinge, Gymnsillehe fü Mthemtik und Physik 1 Um- und Inkugeldien m llgemeinen Tetede Oktoe 2007 In de voliegenden Aeit sollen Um- und Inkugeldien eines llgemeinen Tetedes in Ahängigkeit von den Kntenlängen

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a Mihl Buhlm Mthmtik > Vktohug > Kis Pmtfom Eilitug Im didimsiol ll Vktoum kö Gd ud E uh Kis mit Hilf vo Pmtfom dgstllt wd. Gg si im Folgd i Kis k mit Kismittlpukt Mm m m 3 ud Kisdius, >. Sid ud zwi Eihitsvkto,

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

2 Mathematik: Fourier Analyse und Delta Funktion

2 Mathematik: Fourier Analyse und Delta Funktion Skript zur 2. Vorlesung Quntenmehnik, Freitg den 5. April, 20. 2 Mthemtik: Fourier Anlyse und Delt Funktion Fourier Anlyse ist ein wihtiges mthemtishes Hilfsmittel bei der Anlyse von Wellen und, dher,

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Zusammenfassung. Dynamik ausgedehnter, starrer Körper

Zusammenfassung. Dynamik ausgedehnter, starrer Körper Zusmmenfssung Kpitel l5 Dynmik usgedehnte, ste Köpe Mssenshwepunkt eines usgedehnten Köpes N N Summtion üe lle Mssenelemente : Δ Δ N i i i i N i i i S V m ρ v Δ Δ N i i N i i S m m i i füifiit i lkli El

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

B Figuren und Körper

B Figuren und Körper B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p

Mehr

Parametrisierungsinvarianz von Kurvenintegralen.

Parametrisierungsinvarianz von Kurvenintegralen. Prmetrisierungsinvrinz von Kurvenintegrlen. Stz: Ds Kurvenintegrl ist unbhängig von der Prmetrisierung der betrhteten Kurve. Beweis: Für einen Prmeterwehsel h : [α, β] [, b] einer Kurve gilt β d f x) ds

Mehr

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V.

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V. Goethe-Univesität Fnkfut Institut fü Mthemtik Linee Alge Wintesemeste 28/9 Pof. D. Jko Sti Mtin Lütke Üungsltt 5 3. Noveme 28 Aufge. (42+2 Punkte) Sei V ein K-Vektoum un seien v... v n V. () Sei K α n

Mehr

Workshop zu Trigonometrie

Workshop zu Trigonometrie Wokshop zu Tigonometie Gudun Szewiezek SS 00 Wi eshäftigen uns hie mit de eenen Tigonometie (g. tigonos = Deiek, g. meton = Mß). Dei geht es huptsählih um die geometishe Untesuhung von Deieken in de Eene.

Mehr

Motivation: Zentralsymmetrische Felder spielen wichtige Rolle in der Physik. Zwei Beispiele:

Motivation: Zentralsymmetrische Felder spielen wichtige Rolle in der Physik. Zwei Beispiele: .4 Sphäische Koodinten Motivtion: Zentlsymmetische Felde spielen wichtige Rolle in de Physik. Zwei Beispiele: (i) Zwei-Köpe-Polem: Bewegung zweie usschließlich stndshängig wechselwikende Mssen ode Ldungen

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Probleme, SS 2017 Montg 12.6 $Id: dreiek.tex,v 1.33 2017/06/12 15:01:14 hk Exp $ 2 Dreieke 2.1 Dreieksberehnung mit Seiten und Winkeln Wir beshäftigen uns gerde mit den Konstruktionsufgben für

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (1)

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (1) Autor: Wlter islin on 7 wlter.bislins.h/blog/.5.3 3:3 ewegungsgleihung einer gleihförmig beshleunigten Rkete () Dienstg, 6. Juni - :4 Autor: wbis hemen: Wissen, Physik, osmologie Ds Lösen der reltiistishen

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

Felder und Wellen WS 2018/2019. Φ = q. 4πǫ 0. q z

Felder und Wellen WS 2018/2019. Φ = q. 4πǫ 0. q z Felder und Wellen WS 28/29 Musterlösung zur 6. Übung 5. Aufgbe Die Entfernung eines Punktes von der Ldung wird mit r bezeichnet, drus folgt Φ = q 4πǫ r Aus dem Cosinusstz für ds DreieckqP folgt r 2 = z

Mehr

2.14 Kurvendiskussion

2.14 Kurvendiskussion 4 Kurvendiskussion Der Sinn einer Kurvendiskussion ist es, mit möglihst geringem Arbeitsufwnd den wesentlihen Verluf des Grphen einer Funktion zu erkennen Es ist niht sinnvoll, whllos eine große Anzhl

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Bündelungsgrad und Abstandsfaktor

Bündelungsgrad und Abstandsfaktor ünelungga un btanfakto Die Gleihung fü ie ieale Rihthaakteitik von ikofonen lautet ( o (: Übetagungfakto : Dukanteil : Gaientenanteil mit a l ünelungga bezeihnet man a Vehältni e von einem iealen mikofon

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

T = ( ) oder Druck ( )

T = ( ) oder Druck ( ) A Vektoanalsis efinieen bzw beehnen Sie folgende Gößen und ekläen Sie die Bedeutung: Skalafeld Funktionen on meheen Veändelihen im Raum f f (,,z), bei denen jedem Punkt ein Skala, also eine ungeihtete

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Lineren Algebr Lösungen Wintersemester 9/ Universität Heidelberg Mthemtisches Institut Lösungen Bltt Dr. D. Vogel Michel Mier Aufgbe 44. b 4 b b 4 ( )b Fll : = ( )b 4 b ( ) b ( ) ( )(b ) b

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

2.12 Kurvenparametrisierung

2.12 Kurvenparametrisierung 2.12 Kuvenpaametiieung Definition Funktionen γ : [a, b] R R m beheiben Kuven im R m. Bemekung Kuven laen ih viualiieen duh... (1) den Gaphen Γ γ {t, γ(t) t [a, b]} R m+1 ode (2) die Bildmenge γ([a, b]).

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fkultät Mthemtik Institut für Numerische Mthemtik Aufgbe 2.7 Wie groß ist ds Volumen desjenigen Teiles der Kugel 2 + 2 + 2 2, der wischen den Kegelflächen 2 + 2 2 tn 2 α) und 2 + 2 2 tn 2 β)

Mehr

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors - 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke .. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,

Mehr

2 B. Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II. Techn. Mechanik & Fahrzeugdynamik

2 B. Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II. Techn. Mechanik & Fahrzeugdynamik Tehn. ehanik & Fahzeugdynamik T II Pof. D.-Ing. habil. Hon. Pof. (NUST) D. estle 4. Septembe 015 Püfungsklausu Tehnishe ehanik II Aufgabe 1 (9 Punkte) Die Kolben in einem oto weden übe eine Kubelwelle

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtishes Institut Prof. Dr. F. Vllentin ufge ( + 7 = 0 Punkte) Einführung in die Mthemtik des Opertions Reserh Sommersemester 0 en zur Klusur (7. Juli 0). Es seien M = {,..., n },

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

1 Integration im R Das Volumen im R 3

1 Integration im R Das Volumen im R 3 1 Integrtion im 2 1.1 s Volumen im 3 Wir wollen ds Volumen zwishen dem Grphen einer Funktion f : und der x y Ebene bestimmen. bei werden, wie bei univriten Funktionen, die Teile oberhlb der x y Ebene positiv

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

ÜBUNG 4.: GEKRÜMMTE STÄBE

ÜBUNG 4.: GEKRÜMMTE STÄBE ÜUG 4: GEKÜTE STÄE ufgbe 1: Schnittgößen und Spnnungveteilung gekümmte Stäbe y Löung: K Gegeben: bmeungen und eltung eine im ild dgetellten m uechnitt eingepnnten Stbe mit Keiquechnitt: d ufgbe: ) etimmung

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr